0. Intro & Reference

2020. 12. 23. 18:36Econometrics/Time Series Analysis

학부 시절 수강한 금융시계열분석 과목의 경험을 되살리고, 여러 교재들을 참고하여 다시 내용을 정리하고자 한다. 우수하지도 나쁘지도 않은 성적이었기에(A0였나 A-였나) 내용이 기억이 잘 나지 않지만.

 

주교재는 Ruey S. Tsay - Analysis of Financial Time Series(2010, 3ed.)였고, 요로코롬 생겼다.

 

현재 국내 서점에서는 7만 5천원에(...) 만나볼 수 있다. 내가 수강했을 당시에는 중고나라를 뒤적거렸던 기억이...

 

초판은 2003년에 발매되었다. 특히 빠르게 변하는 금융시장에서 2003년이면(심지어 글로벌 금융위기 이전) outdated 되었다고 느껴지지만, 그래도 현재 금융이론의 기반이 되는 다양한 이론들을 포함한다.

 

목차는 아래와 같다. 

더보기

목차

Financial Time Series and Their Characteristics
Asset Returns
Distributional Properties of Returns
Processes Considered
Linear time series
Stationarity
Autocorrelation
Linear time series
Simple AR models
Simple MA models
Simple ARMA Models
Unit-Root Nonstationarity
Seasonal Models
Regression with Correlated Errors
Consistent Covariance Matrix Estimation
Long-Memory Models
Volatility models
Characteristics of Volatility
Structure of a Model
Model Building
Testing for ARCH Effect
The ARCH Model
The GARCH Model
The Integrated GARCH Model
The GARCH-M Model
The Exponential GARCH Model
The Threshold GARCH Model
The CHARMA Model
Random Coefficient Autoregressive Models
The Stochastic Volatility Model
The Long-Memory Stochastic Volatility Model
Application
Alternative Approaches
Kurtosis of GARCH Models
Nonlinear Models and Their Applications
Nonlinear Models
Modeling
Forecasting
Application
High-Frequency Data Analysis and Market Microstructure
Nonsynchronous Trading
Bid-Ask Spread
Empirical Characteristics of Transactions Data
Models for Price Changes
Duration Models
Nonlinear Duration Models
Bivariate Models for Price Change and Duration
Application
Continuous-Time Models and Their Applications
Options
Some Continuous-Time Stochastic Processes
Ito's Lemma
Distributions of Price and Return
Black-Scholes Equation
Black-Scholes Pricing Formulas
An Extension of Ito's Lemma
Stochastic Integral
Jump Diffusion Models
Estimation of Continuous-Time Models
Extreme Values, Quantiles, and Value at Risk
Value at Risk
RiskMetrics
An Econometric Approach to VaR Calculation
Quantile Estimation
Extreme Value Theory
Extreme Value Approach to VaR
A New Approach to VaR
The Extremal Index
Multivariate Time Series Analysis and Its Applications
Weak Stationarity and Cross-Correlation Matrices
Vector Autoregressive Models
Vector Moving-Average Models
Vector ARMA Models
Unit-Root Nonstationarity and Cointegration
Cointegrated VAR Models
Threshold Cointegration and Arbitrage
Pairs Trading
Principal Component Analysis and Factor Models
A Factor Model
Macroeconometric Factor Models
Fundamental Factor Models
Principal Component Analysis
Statistical Factor Analysis
Asymptotic Principal Component Analysis
Multivariate Volatility Models and Their Applications
Exponentially Weighted Estimate
Some Multivariate GARCH Models
Reparameterization
GARCH Models for Bivariate Returns
Higher Dimensional Volatility Models
Factor-Volatility Models
Application
Multivariate t Distribution
State-Space Models and Kalman Filter
Local Trend Model
Linear State-Space Models
Model Transformation
Kalman Filter and Smoothing
Missing Values
Forecasting
Application
Markov Chain Monte Carlo Methods with Applications
Markov Chain Simulation
Gibbs Sampling
Bayesian Inference
Alternative Algorithm
Linear Regression With Time Series Errors
Missing Values and Outliers
Stochastic Volatility Models
A New Approach to SV Estimation
Markov Switching Models
Forecasting
Other Applications

 

학부에서는 EGARCH Model까지 배운 것으로 기억하는데, 이 내용들은 당연히 다루고 이후에도 중요한 이토의 보조정리(Ito's lemma), 블랙숄즈 방정식(Black-Scholes Equation), VaR(Value at Risk), 벡터자기회귀(VAR), 공적분(Cointegration) 등을 다루어볼 예정이다. (cf. VaR과 VAR은 전혀 다른 개념이다.) 대부분의 notation은 위 교재를 따르며, 그렇지 않을 경우 따로 표기한다.

 

부교재

Helmut Lütkepohl - New Introduction To Multiple Time Series Analysis(2006)

Box, Jenkins, Reinsel, Ljung - Time Series Analysis Forecasting and Control(2015)